
Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8584946

eDoS Mitigation for Autonomic Management on
Multi-Tier IoT

Rajsimman Ravichandiran, Hadi Bannazadeh, Alberto Leon-Garcia
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, Toronto, ON, Canada
Email: {rajsimman.ravichandiran, hadi.bannazadeh, alberto.leongarcia}@utoronto.ca

Abstract—In this age of the Internet of Things and ubiquitous
computing, autonomic management has become a critical compo-
nent in cloud platforms. Autonomic management helps systems
adapt seamlessly and efficiently to rapidly fluctuating workloads.
However, economic Denial of Sustainability (eDoS) attacks can
directly target the autonomic management to waste resources.
In this paper, we propose an eDoS mitigation framework that
incorporates online anomaly detection with our Elascale auto-
nomic management system to thwart eDoS attacks in real-time.
This allows the detection system to be application-agnostic as
this framework utilizes only resource statistics of the monitoring
applications. We present the design and implementation of
our anomaly detection framework with Elascale. We evaluate
Hierarchical Temporal Memory (HTM) and Tukey with Relative
Entropy against spatial and temporal anomalies. Our results
prove that the HTM-based anomaly detection method outper-
forms with significant accuracy.

I. INTRODUCTION

The Internet of Things (IoT) is a catalyst in connecting our
everyday lives with ubiquitous devices around us. Numerous
sensors constantly monitor or provide information to help
make our lives comfortable and safe. With the collection and
streaming of data comes a challenge for cloud infrastructures
to handle the volume, velocity, and variety of the incoming
data. Furthermore, the volatile behaviour of IoT applications
forces cloud platforms to adapt to the workload efficiently.
This problem motivates the use of Autonomic Management
System (AMS) to monitor the usage of cloud resources and
help the system adapt to increased (or decreased) workload.

However, incautiously increasing resources may lead to
wastage in cloud infrastructures. There can be direct security
attacks (economic Denial of Sustainability (eDoS) [1]) on the
autonomic management to make it waste resources and deny
proper distribution to other applications or services. These at-
tacks exhibit abnormal behaviour patterns in the system [2] and
this guides us to incorporate anomaly detection mechanisms
in our system to mitigate eDoS attacks [3].

We envision future large-scale IoT deployments will be
integrated with cloud resources in a multi-tier fashion [4]. The
sensors in the physical environment stream data to an Aggre-
gator (or IoT gateway) which can be located inside or outside
the cloud. The Aggregator can gather the data, perform some
low computing operations and send it to an Edge node located
close to the IoT environment. The Edge node can perform
heavier real-time processing (compared to the Aggregator),
analytics, and send the data to the Core node (located in the
data center) for storage or further processing. We implemented
Elascale AMS to support this multi-tier IoT platform. Elascale
can monitor both microservices and macroservices in cloud
infrastructures [5]. A microservice is a component of an
application that is designed to do a specific task. We define a
macroservice as a resource that hosts multiple microservices
of an application. If more microservices are spawned to handle

a heavy workload, it may be necessary to scale macroservices
as well to provide sufficient resources for those components.

Our contribution in this paper utilizes known online
anomaly detection methods to thwart eDoS attacks for au-
tonomic management system on multi-tier IoT platform. We
describe our implementation of the proposed framework and
present experimental results by evaluating these methods on
an IoT application against various anomalous scenarios.

The organization of this paper is as follows. Our proposed
approach and anomaly detection implementation are described
in sections 2 and 3, respectively. In section 4, we describe the
experimental setup and in section 5, we present our evaluation
results. The final section describes our conclusion and future
work.

II. PROPOSED APPROACH

The eDoS mitigation framework utilizes online anomaly
detection to minimize eDoS attacks. The detection is per-
formed before applying adaptive algorithms to scale resources.
In order to choose the most accurate anomaly detection
model, we evaluated Hierarchical Temporal Memory with
anomaly likelihood (HTM+AL) and Tukey with Relative En-
tropy (Tukey+RE) for different attack scenarios (described in
evaluation section). HTM is a machine intelligence framework
based on interactions of pyramidal neurons in the neocortex
of the brain and can be utilized to perform anomaly detection
using Anomaly Likelihood mechanisms (HTM+AL) [6]. We
chose HTM+AL as it has been evaluated against various
techniques and proved to be the best algorithm according
to the Numenta Anomaly Benchmark dataset [7]. We chose
Tukey+RE [8] as it is more lightweight than HTM+AL [6]
and can be deployed on devices with less computing power
which can be useful for IoT environments.

Resource statistics from each microservice of an application
are streamed into the detection model to identify any anoma-
lies. If the application is new to the detection system, first-time
anomalies will go undetected as the system is still learning the
application's behaviour. Thus, if the application starts receiving
a large workload, the autonomic management will provide
more resources. Once the anomaly detection model learns the
application's behaviour and recognizes anomalous behaviour
regarding that large workload, the AMS will remove any
extra resources provided to the application. Furthermore, the
management will put the application in an investigation phase,
where it 1) checks to see if other anomalies are detected
within this phase; and 2) prevents the AMS from adding extra
resources to minimize economic damage. In order to exit the
investigation phase, no anomalies should be detected within
the period. If any anomaly is found, the AMS resets the cycle
of the investigation phase and continues observing. Figure 1
shows the flowchart for the eDoS mitigation framework for our

Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8584946

Fig. 1: eDoS mitigation framework flowchart within Elascale autonomic management. Once the application enters the investigation phase, we use the investigate counter
to represent the number of consecutive samples of the application that have been labelled as non-anomalous. If the investigate counter equals the length of the
investigation phase, we consider the application non-suspicious (set the counter to 0) and continue with autoscaling process.

AMS. The length of the investigation phase can be configured
based on the application security requirements. Longer period
allows the owner to monitor the abnormality longer, but risk
denying better quality of service to legitimate users. This is
because any resources provided to handle the large workload
are removed during the period.

III. ANOMALY DETECTION IMPLEMENTATION

Two separate detection models (for network and compute re-
sources) are created for each microservice as they have distinct
behaviours (based on the application’s resources usage) and
may not correlate with each other. After the learning phase (or
probationary window), we collect the anomaly likelihood score
predicted by both the models. The likelihood score defines
how likely that the current data point is an anomaly. The
range of the score is 0 to 1 and a larger value indicates a
higher probability that the current value is an anomaly. Once
we gather the likelihood scores from all the microservices
(of an application), we find the sample maximum and if the
value crosses some threshold, we consider the application
anomalous. We chose the standard threshold 1 - ε where
ε = 10−5 as suggested in [6] and it worked well during
our evaluation as well. Since our sampling frequency is 6
samples/minute, we set the length of the investigation phase to
be 6. For evaluation purposes, we set the probationary period
to be 15% of the evaluation period as it is common practice
using this methodology [9].

Furthermore, we utilize the scores from all the microservices
because if one component of an application behaves abnor-
mally, it is bound to affect other components as well. Hence,
the decision takes into account of all microservices within the
application and skip the autoscaling process if any component
exhibits abnormality. We implemented the anomaly detection
framework into the Elascale AMS and evaluated it on the SAVI
Testbed [10]. The source code of the implementation is online
and open-source [11].

IV. EXPERIMENT SETUP

We developed a sample IoT application on the SAVI Testbed
to test various scenarios. The application consists of four
microservices: virtual sensors, aggregator, stream processor,
and a database. The components are deployed in various
macroservices in order to mimic various layers of a multi-
tiered IoT application. The sensor and the aggregator are de-
ployed on a macroservice that represents the sensor/aggregator
layer, while the stream processor is on another macroservice

that depicts the edge layer. Finally, the database is located at
the core layer. All the macroservices are Ubuntu 16.04 virtual
machines with 5 GB memory and 2 CPUs.

The virtual sensors are used to simulate added workload
(e.g. DDoS attacks or legitimate workloads) in the form of
streaming monitoring information (CPU and network usage,
memory, processes, etc.). We can scale up/down the virtual
sensors to increase/decrease the workload. The virtual sensors
send the monitoring information to the aggregator, which uses
Kafka to forward the sensor data to a stream processor. The
stream processor analyzes the incoming sensor data to perform
text classification and data filtering before feeding them to
the database, which uses Cassandra to store historical data.
Once the IoT application is deployed, we evaluate the detection
mechanisms for different anomalous scenarios.

V. EVALUATION

We evaluate our detection framework by comparing the
accuracy between the anomaly detection models for spatial
and temporal anomalous scenarios. For evaluation purposes,
we need to assign the size of the anomaly and probationary
windows. Anomaly windows are used since anomalous data
do not occur at a single point, but rather occurs over time.
Hence, having a window improves the effectiveness of the
scoring policy. We chose the window size to be 10% of the
evaluation period divided by the number of anomalous samples
as this is common practice when evaluating anomaly detection
mechanisms [9]. Our evaluation period for all the scenarios is
2 hours with the sampling frequency of 6 samples per minute.
The period will contain 2 × 60 × 6 = 720 samples, and
our anomaly window will be 0.1 × 720 = 72 ÷ number of
anomalies during that period (depending on the scenario). One
half of the window will be before the anomaly sample and
the other half will be after the sample. If multiple anomaly
windows overlap, we combine the windows as we assume they
identify the same anomalous data.

Probationary windows are used by online detection mecha-
nisms to model or learn the behaviour of the streaming data. It
is usually the first x % of the evaluation period or dataset. As
per [9], a common practice is to set the window as 15% of the
period. Since our evaluation period is 2 hours, the probationary
window will be 108 samples for all the scenarios. For each
scenario, we collect the number of True Positives (TP), False
Positives (FP) and False Negatives (FN) and compare the
accuracy of the models based on the F1 score. We consider
TP if the model can detect any point within the window and

Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8584946

Fig. 2: Spatial anomalies are injected by increasing the workload for the stream
processors as represented by the five bursts in the first plot. The next plot shows
the anomaly scores produced by both HTM+AL and Tukey+RE models during the
anomalous periods.

the score equals the number of samples within the correctly
detected anomaly window. We consider FN if the detection
method does not detect any sample within an anomaly window
and the score equals the number of samples within the missed
anomaly window. Finally, we consider FP if the detection
method falsely detects the correct sample as anomalous and
the score equals the number of erroneously detected samples.
Once we correctly examined the TPs, FPs and FNs, we
compute the Precision (TP

TP+FP), Recall (TP
TP+FN) and finally

F1 score (2× Precision×Recall
Precision+Recall).

A. Spatial Anomaly Detection
We emulate a scenario where multiple rogue sensors at-

tack the stream processor by sending sensor data at a high
frequency. This leads to a structural change in microservices’
behaviours and implies a spatial anomaly in the series. We
implement this scenario by increasing the number of sensor
microservices. Without the anomaly detection mechanism,
Elascale would simply increase the stream processors to
handle the workload which results in wastage of resources.
Hence, we evaluate whether our anomaly detection can help
avoid the eDoS attack.

The first plot of Figure 2 shows the utilization of resources
for stream processor microservices during the attack. As
mentioned before, our evaluation period is 720 samples or
2 hours, and our probationary period is set 108 samples or 18
minutes. The attack can be observed by a period of spikes in
the utilization metrics, where we increase the sensors for two
minutes to create a heavy workload and decrease the sensors
back for a minute. An anomaly represents one heavy workload

Fig. 3: Without HTM+AL, the AMS scaled microservices to handle the unnecessary
workload produced by spatial anomalies, as shown in the first plot. In the next
plot, the AMS was able to detect most of the spatial anomalies with HTM+AL and
minimized the economic damage by 38.12%.

period, and since there are 5 On attack periods, the number of
anomalies for this evaluation period is 5. Since the anomalous
window equals to 0.1 × 720 ÷ 5 = 14.4 samples, the window
encapsulates an On attack period and we have total 5 anomaly
windows for this dataset.

1) Comparison of Results
The last plot of Figure 2 shows the anomaly scores produced

by both models during the attack period. The HTM+AL model
was able to detect 4/5 windows, hence TP = 14.4 × 4 = 57.6
or 58, and FN = 72 - 58 = 14. The model also produced 3 FP
during this period. The Tukey+RE model was able to detect
only 2/5 windows, hence TP = 28.8 or 29, and FN = 43.
However, the model did not produce any FP, hence Precision
was 100%. Based on the F1 scores (as summarized in Table I),
we see that HTM+AL outperformed Tukey+RE significantly
for the spatial anomaly detection scenario.

2) Economic Impact
Since HTM+AL is the better detection method, we can

measure the economic impact by the difference in average
resource usage (in units of microservice-seconds) with and
without the mitigation algorithm. The first plot of Figure 3
shows the number of stream processor replicas used during the
attack when HTM+AL is not used. The average resource usage
is 129,553 microservice-seconds without HTM+AL. When
detection method was used, the average resource usage equals
to 80,172 microservice-seconds. Thus, HTM+AL minimized
38.12% of economic damage.

B. Temporal Anomaly Detection
In this scenario, we simulate an attack where the stream

processors display a temporal abnormality. Before presenting

Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8584946

Fig. 4: Regular workload consists of high workload followed by low workload.
Temporal anomalies were injected where high workload was observed but low
workload was expected, as shown in the first plot. The next plot shows the anomaly
scores produced by both HTM+AL and Tukey+RE models during the anomalous
period.

the anomalies, we need to provide temporal context for the
stream processor. We first create a cyclic behaviour for the
stream processors and then insert abnormal behaviour in-
between these periods. In our use case, we create a 15-minute
periodic pattern where the processors perform a high workload
for half the period (7.5 minutes) followed by a low workload
for the other half. We simulate high workload by increasing
the sensor microservices to increase the stream processor’s
CPU usage and network resources. Since we evaluate for 2
hours, we will have 8 cycles of this behaviour. We insert an
anomaly by increasing the workload (for 2.5 minutes) during
the expected low workload pattern, as shown in the first plot
of Figure 4. Since we insert only one anomaly, our anomaly
window is 0.1 × 720 ÷ 1 = 72 samples or 12 minutes.

1) Comparison of Results
The last plot of Figure 4 shows the anomaly scores produced

by both models during the attack period. The HTM+AL model
was able to detect the anomaly within the window, hence TP
= 72 and FN = 0. The model also produced 10 FP during
this period. The Tukey+RE model was not able to detect any
sample within the window, hence TP = 0, FN = 72 and the
model produced 2 FP. Based on the F1 scores in Table I, we
see that HTM+AL significantly outperformed Tukey+RE for
the temporal anomaly detection scenario.

2) Economic Impact
Figure 5 shows plots of stream processor replicas used

during the attack with and without HTM+AL, respectively. We
calculated the resource usage to be 9,963 microservice-seconds
without HTM+AL. When detection method was used, the
resource usage is 3,570 microservice-seconds, thus minimizing

Fig. 5: Without HTM+AL, the AMS scaled microservices to handle the unnecessary
workload produced by temporal anomalies, as shown in the first plot. In the next
plot, the AMS was able to detect most of the temporal anomalies with HTM+AL
and minimized the economic damage by 64.17%.

TABLE I: Evaluation results summary
Anomaly Model TP FP FN Precision Recall F1

Spatial HTM+AL 59 4 13 93.5% 81.9% 87.4%
Tukey+RE 29 43 0 100% 40.4% 57.5%

Temporal HTM+AL 72 10 0 87.8% 100% 93.5%
Tukey+RE 0 2 72 0% 0% 0%

64.17% of economic damage. Note that these quantities are
substantially smaller than the values from spatial anomaly
detection scenario, as the attack period for the temporal case
is significantly shorter than the spatial case.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our approach to mitigating
eDoS attacks using an HTM+AL mechanism for Elascale's
autonomic management on a multi-tier IoT application. Our
detection system is application-agnostic as it monitors only
utilization of resources by applications. We developed and
deployed the application on the multi-tier SAVI Testbed and
evaluated it against other detection techniques for various sce-
narios. From the results, we show that HTM+AL is more ac-
curate in detecting anomalies for the AMS than the Tukey+RE
model. As future work, we will investigate techniques that can
detect correlated spatial-temporal anomalies and incorporate
intrusion detection systems to improve accuracy.

VII. ACKNOWLEDGEMENT

This research was supported in part by NATO Grant Science
for Peace and Security Programme.

Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8584946

REFERENCES

[1] C. Hoff. (2008, Nov.) Cloud Computing Security: From DDoS
(Distributed Denial Of Service) to EDoS (Economic Denial of
Sustainability. Accessed: Apr. 2018. [Online]. Available:
http://rationalsecurity.typepad.com/blog/2008/11/cloud-computing-
security-from-ddos-distributed-denial-of-service-to-edos-economic-
denial-of-sustaina.html

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[3] R. Ravichandiran, H. Bannazadeh, and A. Leon-Garcia, “Anomaly
detection using resource behaviour analysis for autoscaling systems,”
in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), June 2018, pp. 192–196.

[4] H. Khazaei, H. Bannazadeh, and A. Leon-Garcia, “SAVI-IoT: A
Self-Managing Containerized IoT Platform,” in 2017 IEEE 5th
International Conference on Future Internet of Things and Cloud
(FiCloud), Aug 2017, pp. 227–234.

[5] H. Khazaei, R. Ravichandiran, B. Park, H. Bannazadeh,
A. Tizghadam, and A. Leon-Garcia, “Elascale: autoscaling and
monitoring as a service,” in CASCON, 2017.

[6] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134 – 147, 2017, online Real-Time Learning Strategies for Data
Streams.

[7] “The Numenta Anomaly Benchmark,” GitHub, Online Code Repos,
Accessed: Apr. 2018. [Online]. Available:
https://github.com/numenta/NAB

[8] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan, “Statistical Techniques for Online Anomaly Detection in
Data Centers,” in 12th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2011) and Workshops, May
2011, pp. 385–392.

[9] “The Numenta Anomaly Benchmark,” White Paper, Numenta, Inc.,
Redwood City, CA, 2015, Accessed: Apr. 2018. [Online]. Available:
https://github.com/numenta/NAB/wiki

[10] T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, SAVI Testbed
Architecture and Federation. Cham: Springer International
Publishing, 2015, pp. 3–10.

[11] “Elascale secure,” GitHub, Online Code Repos, Accessed: Jun. 2018.
[Online]. Available: https://github.com/RajsimmanRavi/Elascale secure

