
Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8460025

Anomaly Detection using Resource Behaviour
Analysis for Autoscaling systems

Rajsimman Ravichandiran, Hadi Bannazadeh, Alberto Leon-Garcia
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, Toronto, ON, Canada
Email: {rajsimman.ravichandiran, hadi.bannazadeh, alberto.leongarcia}@utoronto.ca

Abstract—In a cloud environment, autoscaling systems al-
leviate applications when additional resources are required.
However, an illegitimate or malicious workload may force the
system to automatically provision resources when they are not
needed, thus leading to two key problems: economic denial of
sustainability (eDoS) and wastage of resources. In this paper,
we propose an anomaly detection mechanism using resource
behaviour analysis to prevent these issues. We build univariate
autoregressive statistical models to analyze resource behaviours
for each microservice on the platform. The use of multiple
models helps us discern unusual anomalies rather than a sudden
increase in certain properties. We implemented the anomaly
detection for the Elascale autoscaling engine on SAVI Testbed
and evaluated the detection mechanisms against different attacks.
From the results, we conclude that the models can accurately
detect anomalous behaviour for applications (with cyclical trends)
on the autoscaling platform.

I. INTRODUCTION

Autoscaling is one of the most essential components re-
quired in cloud environments. The end-user/owner of the
application does not need to decide when to up/down-scale
resources. The system will automatically provision resources
during peak periods and downscale when the applications
become idle or do not utilize many resources. On the rise in
microservice-based architectures, we developed the Elascale
autoscaling solution to monitor both micro/macroservices [1].
A microservice is basically a container that runs a specific
component of an application/service. For example, a web
application server can have multiple components such as user
interface (UI), database, server back-end etc. In that case, the
UI can be a microservice. Subsequently, we define a macroser-
vice as basically a virtual machine (VM) that runs multiple
microservices of the same application. For instance, all pieces
of the web application (explained above), can run on a single
macroservice. Hence, if more microservices are being scaled to
meet demands, the macroservice that hosts the modules must
scale as well. Elascale monitors both micro/macroservices and
scales them based on their resource usage. We deployed it on
a cloud research platform (SAVI Testbed) and open-sourced
the tool on GitHub for the public research community/industry
to utilize [2].

Autoscaling may also be used to thwart (Distributed) Denial
of Service (DDoS) attacks, as it can withstand/absorb applica-
tion layer traffic attacks by provisioning more resources [3].
However, this causes a major drawback. First, they obey being
forced to pay for those scaled resources (which leads to eDoS),

even though the application has been serving a majority of
useless requests. Second, the infrastructure provider wastes
resources to handle the unnecessary workload, which could
have been used for other applications. For example, Google’s
autoscaling system can be tricked by Yo-Yo based DoS attacks
[4], which produces eDoS for owners and wastes resources.

The attacks may not be limited to DDoS attacks. An intruder
may simply stress the system (using Linux tools) to increase
CPU utilization and deceive the autoscaling system to provide
more resources. We implemented a variant of this attack on
a microservice and defined it as a Microservice Stress Attack.
We discuss these attacks further in the evaluation section.

We specifically focused on resource patterns with cyclic
trends as applications that involve human interactions usually
contain this type of usage. For example, [5] explored workload
patterns of a public web server from Michigan State Univer-
sity, which encountered around a million requests during the
period. The access intensity peaked at 10 AM and stays high
until late afternoon and decreased over time to the lowest
point at 3 AM. The pattern repeated each day during the
investigation period. Hence, we simulated traffic patterns with
cyclic trends for our experiment setup in order to emulate real-
world application use cases.

The main contribution of this paper is an anomaly detection
mechanism that utilizes autoregressive models to perform
resource behaviour analysis on microservices. By performing
time series based forecasting, we can detect anomalies on
cyclic resource usage patterns. This greatly helps autoscaling
systems in reducing resources wastage during eDoS attacks.

The organization of this paper is as follows. In section
2, we present the background concepts for our work in this
paper. Related work is presented in section 3. In section 4,
we describe the system design of our anomaly detection. In
section 5, we discuss the evaluation of our solution and in the
final section, we present our conclusion and future work.

II. BACKGROUND

In this section, we briefly describe key background research
work to this paper.

A. Smart Applications on Virtual Infrastructure

Smart Applications on Virtual Infrastructure (SAVI) Testbed
is a multi-tiered, distributed platform that provides resources
for research and development on future network protocols and



Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8460025

architectures. It spans eight Canadian universities, and it is
composed of several Core data centers and many “Smart Edge”
data centers [6]. In addition to compute resources, it contains
various virtualized heterogeneous resources such as Field
Programmable Gate Arrays (FPGAs), Graphical Processing
Units (GPUs), Software-Defined Radios (SDRs) etc. The SAVI
Testbed architecture is based on Software-Defined Infrastruc-
ture (SDI) concepts. It is built using OpenStack open-source
cloud computing framework and Software-Defined Network-
ing (SDN) for networking. We use the SAVI Testbed to
research, develop and implement our Elascale autoscaling so-
lution (as well as anomaly detection) for macro/microservices
deployed on the platform.

B. Elascale

Elascale is an autoscaling engine (deployed as a Docker mi-
croservice) that scales resources for both micro/macroservices.
It is part of the platform that monitors, stores and visualizes
collected metrics. Hence, we refer to the environment as the
Elascale platform. The architecture of the Elascale platform
is shown in figure 1. Instead of designing our platform from
square one, we incorporated multiple open-source tools that
adhere to our requirements to build our system. Elascale uses
Docker Swarm for clustering, scheduling, and scaling mi-
croservices. Subsequently, it uses Docker machine to manage
and provision macroservices. Moreover, Elascale UI shows
visualization dashboards along with autoscaling configuration
options (such as threshold policies) for the application user.
Metricbeat and Dockbeat monitor macroservices and mi-
croservices (respectively). Elasticsearch stores the monitoring
statistics and Kibana is used for presenting data visually.
Furthermore, NGINX controls access and encrypts communi-
cation channels using (Secure Sockets Layer) SSL certificates
(to prevent eavesdropping/tampering) for Elasticsearch and
Kibana.

III. RELATED WORK

In this section, we describe previous work in eDoS mitiga-
tion methods and resource behaviour analysis for autoscaling
systems deployed in the cloud.

1) eDoS Mitigation Methods: [7] provides a mitigation
solution for eDoS by directing suspicious traffic to a scrubber
service (secondary location) and use client puzzles to detect le-
gitimate users. The solution works on web server applications
and suspicious traffic is determined by threshold policies (eg.
requests/sec). This solution mainly depends on the applications
running on the platform and it intercepts the interactions of
the application. This may be seen as intrusive or dependent
on the application layer. [8] uses two-step methods to mitigate
eDoS: use a virtual firewall with blacklist and use Turing Test
to verify suspected users. As malicious users are detected, the
blacklist gets updated. The solution uses a random check to
choose suspected users and furthermore, the blacklist can grow
exponentially when it is attacked by a horde of botnets.

Fig. 1. Elascale Platform Architecture

2) Resource behaviour analysis: [?] utilizes characteristic
curves of VM’s resources including CPU usage, network, disk
usage and uses a pre-motion step to forecast the properties.
This allows the VMotion scheduling system to efficiently place
VMs without affecting the quality of service (QoS) of other
running applications. VMotion is VMware’s proprietary prod-
uct and scheduling strategies are different for other platforms.
In [9], Jiang et al. proposed a scheme for web applications in
the cloud. They used machine learning to analyze the historical
distribution of web requests and forecast future workload and
autoscale accordingly. A drawback to this innovation is it
works only for web applications.

IV. SYSTEM DESIGN

In this section, we present the design details of the anomaly
detection mechanism for Elascale autoscaling engine.

A. Proposed Approach

We tackled the anomaly detection problem by analyzing
historical datasets of the microservices resources and build sta-
tistical models based on their “normal” behaviours. We define
“normal” behaviour as actions performed by the application
when handling a legitimate workload. We assume all requests
or interactions with the application were performed by justifi-
able users or systems. Once the models are constructed, we use
them to detect anomalies by forecasting resource behaviours
and evaluating them against actual values. If the real value
differs by some threshold from the expected behaviour, then
it is considered an anomaly. Note that we build univariate
statistical models for each resource in order to accurately
detect anomalies. In further sections, we describe the design
methodology using only CPU resource statistics. But, the same



Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8460025

approach can be used to build models for other resources as
well.

B. Experiment Setup

In order to train the model, we wanted to use a real
production-based workload. However, we were unable to find a
dataset that profiled regular users and particular attack vectors
that we were evaluating against our system. Hence, we created
a web server and traffic generators on SAVI Testbed (based
on OpenStack-based cloud environment). This imitates a web
application on a cloud platform with legitimate users accessing
the web server. We deployed an NGINX Docker container
on a m1.medium flavor-based (5 GB memory, 20 GB disks,
2 vCPUs), VM with an Ubuntu 16.04 image. The container
is a simple HTTP server that serves a static web page upon
request. For traffic generators, we wrapped a simple stress tool
[10] on a Docker container and deployed three instances on a
different VM (with the same specifications as above). Figure
2 showcases the setup of our application. Furthermore, we
deployed these two VMs on different physical servers in order
to account for traffic delay, throughput and processing latency
in network interfaces and in-between switches and routers.

Fig. 2. Experiment Design Architecture

In order to get some historical dataset, we perform this
experiment for 14 hours. The number of hours is selected
based on accuracy/processing time trade-off (explained in
implementation section). As mentioned in earlier sections,
Dockbeat collects microservice statistics every ten seconds.
However, the dataset is too granular to find key patterns for
our time series models. Hence, we downsample the dataset by
taking an average of all six samples occurring within a minute.

C. Model Forecast

After downsampling the dataset, we build different statis-
tical Autoregressive (AR) models (based on lag periods) in
order to evaluate the forecast predictions. First, we separate
the dataset for training and testing with 90/10 ratio. We train

an AR model on the first 90% of the dataset and predict the
rest of the 10%.

In order to evaluate our model, we use mean square error
(MSE), root mean square error (RMSE) and mean absolute
error (MAE). We compared models with different lags and
as shown in table I, the simplest model AR(p=1) outperforms
other lagged models based on accuracy and processing time.

TABLE I
AR MODEL COMPARISON

Criteria AR(p=1) AR(p=10) AR(p=20)

MSE 4.95× 10−4 5.94× 10−4 7.69× 10−4

RMSE 2.18× 10−2 2.42× 10−2 2.75× 10−2

MAE 1.47× 10−2 1.67× 10−2 2.04× 10−2

Processing Time (secs) 4.46× 10−3 10.79 427.99

Hence, we finalized our forecasting model to be AR(p=1)
model. Figure 3 showcases the results of our predicted using
our AR model and observed values for the last 60 minutes.

Fig. 3. Predicted vs. Observed plot

D. Implementation on Elascale

In order to build the AR model, we use the last 14 hours
of data (from the triggered event) to create the model and
test it against the last few samples. We chose the size of the
dataset based on two criteria: accuracy and processing time.
In other words, how accurate can the dataset represent the
resource usage patterns and how long does it take to process
the dataset. From our research, we found that 14 hours of
data accurately represents the application’s patterns and can
be processed within 5 seconds. Furthermore, we configured
Dockbeat logs to not exceed 10 MB per file and keep only
7 files on the system. Hence, the size of the dataset that
needs to be processed is always 70 MB for any microservice.
Therefore, the anomaly detection mechanism is scalable for
this architecture. The design is summarized in algorithm 1.

As shown in the algorithm, we chose 0.15 to be the
error threshold as this value produced the least false posi-
tives and negatives (based on ROC curves for other values).
Furthermore, we create multiple, univariate AR models for



Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8460025

Algorithm 1: Anomaly Detector Algorithm

1 if high or low cpu usage then
2 - Get last 14 hours of data from Dockbeat logs;
3 - Downsample into 1 minute interval bins;
4 - Split 90/10 Training and Testing data;
5 - Build AR model and predict last few values;
6 - error = abs(predicted− observed);
7 if error >= 0.15 then
8 Report it as anomaly
9 else

10 Return False

different properties. We use algorithm 1 to build a model for
network received packets/sec data (network rx) as well. Since
the traffic generators create more requests to increase CPU
usage, the network traffic increases simultaneously. Hence,
both network and CPU utilization have very similar cyclic
trends, in terms of usage. The only differences we made to
network dataset was normalizing the data (because of high
variance between data points) and having a different error
threshold between predicted and observed value (based on
ROC curves using network data). Hence, we can use multiple
models and check for anomalies on different resources. The
implementation methodology of the models to Elascale is
shown in algorithm 2. Based on our dataset, we chose 20% to
be considered high CPU usage, because the traffic generators
increased the web server around 20-40%. Hence, in order to
trigger the anomaly detection mechanism, we had to keep the
criteria at 20% and low CPU usage to be 5%.

Algorithm 2: Algorithm integration into Elascale

1 for each micro/macroservice do
2 if cpu usage within acceptable threshold then
3 Do nothing
4 else if cpu >= 20% then
5 if cpu or net AR models detect anomaly then
6 Don’t upscale microservice
7 else
8 Allow upscaling the microservice

9 else
10 if cpu or net AR models detect anomaly then
11 Don’t downscale microservice
12 else
13 Allow downscaling the microservice

V. EXPERIMENTAL EVALUATION

In this section, we simulate two attack scenarios and eval-
uate the anomaly detection in these use-cases.

A. Simple DoS Attack

In this scenario, we simulate a simple DoS attack by using
Apache HTTP server benchmarking tool ab. We perform
100000 requests with 10 concurrency requests simultaneously.

Fig. 4. CPU Usage and number of microservices for Web Server during
simple DoS Attack when Anomaly Detection is not enabled on Elascale

As shown in Figure 4, when anomaly detection is not
enabled on Elascale, more microservices are deployed to
handle the workload as the CPU Utilization increases. Note
that we set a maximum threshold of four instances for each
microservice, in order to prevent massive scaling of resources.
Therefore, this attack resulted in wasting three microservices.
Once we stop the attack, the number of microservices de-
creases.

Fig. 5. CPU Usage and number of microservices for Web Server during
simple DoS Attack when Anomaly Detection is enabled on Elascale

Figure 5 shows the states of the system when anomaly
detection is enabled on Elascale. As the CPU utilization
increases, our AR models were able to detect it as anomaly
and Elascale did not autoscale the microservice. Hence, the
number of microservices stayed flat at one, while the CPU
Utilization stayed at 100%.

As seen on the plot, the microservice suffers from the attack
regardless. This is because our algorithm does not focus on
mitigation mechanisms and thus it is out of scope for this



Published version of paper is in IEEEXplore: https://ieeexplore.ieee.org/document/8460025

paper. However, one option is to send an alert to the application
owner when an anomaly is detected. This will allow the user
to decide whether to keep the application running and incur
the economic cost or close the application.

B. Microservice Stress Attack

In this scenario, we emulate a malicious user who success-
fully enters the environment and stresses the microservice to
generate false notion that the web server needs more resources.
We can simulate this attack by executing the stress Linux
command on the web server container.

Fig. 6. CPU Usage, Network Received Packets/sec (in %) and number
of microservices for Web Server during stress attack when Anomaly
Detection is not enabled on Elascale

Fig. 7. CPU Usage, Network Received Packets/sec (in %) and number
of microservices for Web Server during stress attack when Anomaly
Detection is enabled on Elascale

Figure 6 shows a plot of the trends of CPU Utilization,
Network Received packets/sec (in percentage) and microser-
vices when anomaly detection is not enabled on Elascale.
As seen on the plot, there is a high amount of CPU usage
whereas there is a minimal usage of network activity. As the
CPU usage increases, Elascale tries to reduce the workload by
scaling more services. As more services get deployed, the CPU
usage decreases. However, Elascale does not recognize that the
workload is bogus and ends up wasting three microservices.

Figure 7 shows the plot of the resources and number of
microservices trend when anomaly detection was enabled on
Elascale. Since the attacker is not generating any network
traffic, the AR model for the network property will detect
this unusual low packets/sec property. Hence, this anomaly
was detected by our algorithms and we can clearly see that
the number of microservices stays flat at one, while the CPU
usage stays at around or above 100%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an anomaly detection mechanism
by performing resource behavioural analysis on microservices
using AR statistical models on autoscaling systems. This
helps reduce eDoS attacks for application owners and prevents
resources wastage on the infrastructure. The models work very
well in detecting simple DoS and Microservice Stress attacks
on our environment where we perceive cyclical trends of
microservices usage of resources. This allows our time series
forecasting algorithms to train and forecast with very low
MSE. In our future work, we look into possible methodologies
to detect anomalies that do not contain cyclical patterns.
Furthermore, we will look into possible use-cases of validating
our algorithms with real-world public datasets.

REFERENCES

[1] H. Khazaei, R. Ravichandiran, B. Park, H. Bannazadeh,
A. Tizghadam, and A. Leon-Garcia, “Elascale: autoscaling and
monitoring as a service,” in CASCON, 2017.

[2] Elascale secure. [Online]. Available:
https://github.com/RajsimmanRavi/Elascale secure

[3] “Aws best practices for ddos resiliency,” White Paper, Amazon, June
2016.

[4] A. Bremler-Barr, E. Brosh, and M. Sides, “Ddos attack on cloud
auto-scaling mechanisms,” IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, pp. 1–9, 2017.

[5] X. Chen, P. Mohapatra, and H. Chen, “An admission control scheme
for predictable server response time for web accesses,” in Proceedings
of the 10th World Wide Web Conference for Web accesses, Hong
Kong, May 2001.

[6] T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, SAVI Testbed
Architecture and Federation. Cham: Springer International
Publishing, 2015, pp. 3–10. [Online]. Available:
https://doi.org/10.1007/978-3-319-27072-2 1

[7] N. Kumar, P. Sujatha, V. Kalva, R. Nagori, A. Katukojwala, and
M. Kumar, “Mitigating economic denial of sustainability (edos) in
cloud computing using in-cloud scrubber service,” in Fourth
International Conference on Computational Intelligence and
Communication Networks, 2012, pp. 535–539.

[8] Z. A. Baig, S. M. Sait, and F. Binbeshr, “Controlled access to cloud
resources for mitigating economic denial of sustainability (edos)
attacks,” Computer Networks, vol. 97, no. Supplement C, pp. 31 – 47,
2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128616000050

[9] J. Jiang, J. Lu, G. Zhang, and G. Long, “Optimal cloud resource
auto-scaling for web applications,” pp. 58–65, 05 2013.

[10] cyweb hammer. [Online]. Available: https://github.com/cyweb/hammer
[11] “An architectural blueprint for autonomic computing.” White Paper,

IBM, June 2005.
[12] A. Sun, T. Ji, and J. Wang, “Cloud Platform Scheduling Strategy

Based on Virtual Machine Resource Behaviour Analysis,” Int. J. High
Perform. Comput. Netw., vol. 9, no. 1/2, pp. 61–69, Feb. 2016.
[Online]. Available: http://dx.doi.org/10.1504/IJHPCN.2016.074659


